Elements and Operations - A **symmetry element** is an imaginary geometrical construct about which a symmetry operation is performed. - A **symmetry operation** is a movement of an object about a symmetry element such that the object's orientation and position before and after the operation are indistinguishable. - ✓ A symmetry operation carries every point in the object into an **equivalent** point or the **identical** point. #### **Point Group Symmetry** - All symmetry elements of a molecule pass through a central point within the molecule. - The more symmetry operations a molecule has, the higher its symmetry is. - Regardless of how many or few symmetry operations a molecule possesses, all are examples of one of five types. | Operation | Element | Element Construct | |--|---|-------------------| | Identity, E | The object | N/A | | Proper rotation, C_n | Proper axis,
Rotation axis | line | | Reflection, σ | Mirror plane,
Reflection plane | plane | | Inversion, i | Inversion center,
Center of symmetry | point | | Rotation-reflection Improper rotation, S_n | Improper axis, alternating axis | line | ## Proper Rotation, C_n - If a molecule has rotational symmetry, rotation by $2\pi/n = 360^{\circ}/n$ brings the object into an equivalent position. - \checkmark The value of n is the **order** of an n-fold rotation. - ✓ If the molecule has one or more rotational axes, the one with the highest value of *n* is the **principal axis of** rotation. Successive C_4 clockwise rotations of a planar MX_4 molecule about an axis perpendicular to the plane of the molecule ($X_A = X_B = X_C = X_D$). The C_2 ' and C_2 " axes of a planar MX_4 molecule. # General Relationships for C_n $$C_n^{n} = E$$ $$C_n^{n/2} = C_2 \quad (n \text{ even})$$ $$C_n^{n-1} = C_n^{-1}$$ $$C_n^{n+m} = C_n^{m} \quad (m < n)$$ ✓ Every *n*-fold rotational axis has *n*-1 associated operations (excluding $C_n^n = E$). #### Reflection, σ For every point a distance r along a normal to a mirror plane there exists a point at -r. Two points, equidistant from a mirror plane o, related by reflection - ✓ For a point (x,y,z), reflection across a mirror plane σ_{xy} takes the point into (x,y,-z). - ✓ Each mirror plane has only one operation associated with it, since $\sigma^2 = E$. # Horizontal, Vertical, and Dihedral Mirror Planes Mirror planes of a square planar molecule MX₄. #### Inversion, i - If inversion symmetry exists, for every point (x,y,z) there is an equivalent point (-x,-y,-z). - ✓ Each inversion center has only one operation associated with it, since $i^2 = E$. Effect of inversion (*i*) on an octahedral MX_6 molecule $(X_A = X_B = X_C = X_D = X_E = X_F)$. #### **Inversion Center of Ethane in Staggered Configuration** Ethane in the staggered configuration. The inversion center is at the midpoint along the C-C bond. Hydrogen atoms related by inversion are connected by dotted lines, which intersect at the inversion center. The two carbon atoms are also related by inversion. ## Rotation-Reflection (Improper Rotation), S_n S_n exists if the movements C_n followed by σ_h (or vice versa) bring the object to an equivalent position. ✓ If both C_n and σ_h exist, then S_n must exist. Example: S_4 collinear with C_4 in planar MX_4 . ✓ Neither C_n nor σ_h need exist for S_n to exist. Example: S_4 collinear with C_2 in tetrahedral MX₄. #### S_4 Rotation of Tetrahedral MX_4 S_4 improper rotation of a tetrahedral MX₄ molecule (X_A = X_B = X_C = X_D). The improper axis is perpendicular to the page. Rotation is arbitrarily taken in a clockwise direction. Note that neither C_4 nor σ_h are genuine symmetry operations of tetrahedral MX₄. Successive S_4 operations on a tetrahedral MX_4 molecule ($X_A = X_B = X_C = X_D$). Rotations are clockwise, except S_4^{-1} , which is equivalent to the clockwise operation S_4^{-3} . ## Representing a Tetrahedral MX₄ Molecule in a Cube A C_2 axis, collinear with an S_4 axis, passes through the centers of each pair of opposite cube faces and through the center of the molecule. # Non-Genuine S_n Operations: $$S_1 = \sigma$$ $$S_2 = i$$ #### **General Relations of Improper Axes** Equivalences of successive S_n operations: - ✓ If *n* is even, $S_n^n = E$ - ✓ If *n* is odd, $S_n^n = \sigma$ and $S_n^{2n} = E$ - ✓ If m is even, $S_n^m = C_n^m$ when m < n and $S_n^m = C_n^{m-n}$ when m > n - ✓ If S_n with even n exists, then $C_{n/2}$ exists - ✓ If S_n with odd n exists, then both C_n and σ perpendicular to C_n exist. # **Examples** Find all symmetry elements and operations in the following: